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R Motivation

The Standard Model of particle F
orces

physics currently contains:
9

m Quark mixing

m Transitions between charged m B
and neutral leptons of same
flavor

Gauge Bosons

m Neutrino oscillations

Leptons
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E Motivation

The Standard Model of particle
physics currently contains:

Matter

m Quark mixing

m Transitions between charged
and neutral leptons of same
flavor

m Neutrino oscillations

No charged lepton flavor violation
(CLFV) observed so far! Leptons

Mu2e will search for the neutrinoless conversion of a muon into an electron in
the coulomb field of a nucleus (uUN — eN) with a projected
upper limit of 6 x 10717 (90% CL)

Current limit by SINDRUM-II (PSI): B(pAu — eAu) < 7 x 1073(90% CL)

SM prediction via neutrino mixing is ~ 10~>*, but extensions of SM predict
values up to ~ 107 * (Leptoquarks, heavy neutrinos, SUSY,...)
= Unique possibility to test for New Physics ZDR
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- New physics

Model independent Lagrangian:
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The Mu2e experiment
The Mu2e experiment will search for CLFV in the process (u~ + Al — e~ + Al)
Stopped muons have a lifetime of ~ 900ns in the 1s orbital of the Al nucleus

m about 60% of stopped muons undergo the muon capture reaction

(e.g- 1~ +2Al = v, +?"Mg)
v
:-2 DIO tail
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(MeV)

m ~ 40% of stopped muons decay in
orbit (DIO)

- Michel spectrum of decay
electrons dies around M, /2
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- The Mu2e experiment

Proton beam creates pions,
which decay into muons
and other particles

Magnet capnfres slow muons
and directs them
to aluminum target

m Muons are obtained from 8 GeV proton beam on tungsten target

- time-averaged beam power: 7.3kW
- 4 x 107 protons/pulse, pulse separation: 1695ns

- Magnetic field in Production Solenoid guides produced pions towards
Transport Solenoid

- Pions decay into muons




- The Mu2e experiment

Proton beam creates pions,
which decay into muons
and other particles

Magnet capnfres slow muons
and directs them
to aluminum target

m Muons are transported in s-shaped Transport Solenoid

- Absorber foils remove antiprotons
- Solenoidal magnetic fields separate oppositely charged particles
- Collimators select low-momentum negatively-charged muons.




- The Mu2e experiment

Proton beam creates pions,
which decay into muons
and other particles

H Aluminum nuclei

capture muons

Trac'ker Calorimeter
Mag"e;::%‘il:;(ej:t'ﬁ:’mm“°"s (Look for ~105 MeV electrons)

to aluminum target Stopping target

m Muons are stopped on aluminum target foils in Detector Solenoid

- stopped muons decay in orbit or are captured by the Al nucleus
- decay electrons are detected by a tracking detector and a calorimeter




The Mu2e experiment

Proton beam creates pions,
which decay into muons
and other particles

Aluminum nuclei
capture muons

Muons decay

Trac'ker Calorimeter
(Look for ~105 MeV electrons)

2.0 T stopping target

Magnet capldres slow muons
and directs them
to aluminum target

m Graded fields in the 3 solenoid systems are important

to increase muon yields

to suppress backgrounds

to improve geometric acceptance for signal electrons
to prevent particle trapping
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The Mu2e experiment

Pulsed proton beam allows definition of a “Live Window” for the signal to sup-
press prompt background (1695ns peak-to-peak):
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- Fermilab accelerator complex provides optimal pulse spacing for Mu2e
- 700 ns delay allows to suppress prompt background from pions by ~107"
- Must achieve extinction (N,+ out of bunch)/(N,+ in bunch) < 10~
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m low mass straw drift tubes (5mm diam.)
m > 20 000 straws
m in vacuum and at ~1 T magn. field

m momentum resolution o, < 180 keV/c
3196 mm

m inner 38 cm not instrumented
— “plind” to low-momenta DIO
electrons




Calorimeter

m composed of two rings separated
by half a wavelength of signal
electron trajectory helix

m each ring composed of ~700 pure
Csl crystals read out by SiPMs

m independent measurement of
- energy (0g/E ~ 5%)
- time (ot ~ 0.5ns)
- position (opes ~ 1cm)

m independent trigger information

m particle ID




The cosmic ray veto detector

The cosmic ray veto system (CRV) covers entire Detector Solenoid and
half of the Transportation Solenoid (TS)




The cosmic ray veto detector

Without CRV, ~ 1 background event mimicking signal per day produ-
ced by cosmic-ray muons

m 4 overlapping layers of scintillator bars (5 x 2 x ~ 450 cm®)
m 2 wavelength-shifting fibers/bar

m Read out both end of each fiber with SiPMs

m required inefficiency ~ 10™*




- The Stopping-Target Monitor

High-purity Germanium (HPGe) detector to determine overall muon-capture
rate on Al to the level of 10%

Production Target Stopping Target Sweeper magnet  Collimator Collimator HPGe det.

® measure X- and y-rays from muonic Aluminum m line-of-sight view of Muon Stopping
t
- 347 keV 2p-1s X-ray (80% of muon stops) Targe
- 844 keV delayed y-ray (5% of muon m sweeper magnet to reduce charged
stops) particle background and radiation
- 1809 keV ~y-ray (30% of muon stops) damage to detector

m Recently it was decided to accompany the HPGe detector with a LaBr detector (worse
energy resolution, but can take higher rates) PP




- Production Target and HRS

The production target and the bronze heat and radiation shield (HRS)
have been manufactured:

g Beam




Magnet production

In total 75 km of conductor:

m Conductor production completed




Magnet production

Transport solenoid production at ASG (Genova) and Fermilab:

m All TS units now at Fermilab and being tested (almost done)
m Upstream TS units assembled
m Upstream TS thermal shield delivered to Fermilab




- Magnet production

Production and Detector Solenoid production at General Atomics
(Tupelo):
m Winding of PS coil:




™ Mu2e @HZDR: The ELBE radiation source

The ELBE “Electron Linac for beams with high Brilliance and low Emittance”
delivers multiple secondary beams.

- E. <40 MeV; l. <1 mA; Micropulse duration 10 ps < At < 1 us
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™ Mu2e @HZDR: The ELBE radiation source

The ELBE “Electron Linac for beams with high Brilliance and low Emittance”
delivers multiple secondary beams.

- E. <40 MeV; I, <1 mA; Micropulse duration 10 ps < At < 1 us
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EPOS: Positron (+ Photoneutron) source (Radiation hardness tests)
gELBE: Gamma beam facility (HPGe detector design for STM and
calorimeter board testing) (g A




- Testing radiation hardness of SiPMs at EPOS

Positron production by ELBE 30 MeV electron beam on tungsten target is
accompanied by a large amount of photoproduced neutrons with an energy
spectrum which peaks at ~1 MeV.

— this matches the expected radiation conditions at Mu2e

Neutron fi m2/s) at 100uA e- beam

1.0e+12

m expected neutron fluence has been
simulated using FLUKA

108411
1.00+10

10409

m SiPMs from 3 suppliers have been
installed on top of the EPOS target
bunker for a parasitic beamtime

108407
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m dark current of SiPMs has been 2(om)
monitored (stabilized at 20°C)

m integrated fluence of more than
8 x 10" 1-MeV-equiv. neutrons/cm?
has been accumulated

m Routinely parasitic irradiation of
SiPMs for quality assurance




- Testing radiation hardness of SiPMs at EPOS

Positron production by ELBE 30 MeV electron beam on tungsten target is
accompanied by a large amount of photoproduced neutrons with an energy
spectrum which peaks at ~1 MeV.

— this matches the expected radiation conditions at Mu2e

Neutron fluence (neutrons/cmas) at 100uA e- beam

1.0e+12

m expected neutron fluence has been
simulated using FLUKA

108411
1.00+10

10409

m SiPMs from 3 suppliers have been
installed on top of the EPOS target
bunker for a parasitic beamtime

m dark current of SiPMs has been
monitored (stabilized at 20°C)
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m integrated fluence of more than
8 x 10" 1-MeV-equiv. neutrons/cm
has been accumulated
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- Studying HPGe detector response at gELBE

The gELBE bremsstrahlung facility was used to study HPGe detector per-
formance. gELBE utilizes Bremsstrahlung production from an electron beam
impinging on niobium radiator foils.
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- Studying HPGe detector response at gELBE

Use of gELBE’s pulsed ~y-beam with max. energy of 15 MeV.

m gELBE pulse separation of 2.5us close to Mu2e’s 1.7us proton pulse
separation

m Up to 125kHz of gamma rates expected for Mu2e Stopping-Target Monitor
HPGe detector during beam pulse
- high average -y energy (~ 5 MeV)
- high beam pulse occupancy (~ 20%)
m First beamtime in 2017:

- Measure HPGe detector performance in the gELBE beam (energy resolution, radiation
damage,...)

- Understand best beam and detector geometry and position (including absorbers)

- HZDR provided radiation transport simulations using the FLUKA code to estimate -y
energy spectrum, energy deposit in crystal etc.

m Next beamtime scheduled in august 2021 to test DAQ chain for both
HPGe and LaBr detectors

- Analysis algorithms ported to FPGA firmware using HLS by HZDR
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Studying HPGe detector response at gELBE
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Mu2e MC simulations with FLUKA

The Mu2e offline simulation geometry has been ported to FLUKA:




E Mu2e MC simulations with FLUKA

The Mu2e offline simulation geometry has been ported to FLUKA:
- Importing Mu2e magnetic fieldmaps allows to transport charged particles through
the solenoid systems
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E Mu2e MC simulations with FLUKA

The Mu2e offline simulation geometry has been ported to FLUKA:
- Importing Mu2e magnetic fieldmaps allows to transport charged particles through
the solenoid systems
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Conclusion & Outlook

m The Mu2e experiment at FERMILAB will search for the neutrinoless

conversion of a muon into an electron in the coulomb field of an
Aluminum nucleus

- projected upper limit: 6 x 10717 (90% CL)

m Detector construction advancing (despite COVID)
m Solenoid construction ongoing (TS units ready)
m HZDR contributes with beamtimes at the ELBE radiation source for

tests of radiation hardness of calorimeter components and detector
design for STM
In addition studies with FLUKA and MCNP6 simulation codes are
under way

- production and stopping target rates

- shielding assessment
With physics dataking starting in 2023*, Mu2e will either
unambiguously discover CLFV or push the limit on muon—electron
conversion by four orders of magnitude —=ZDR

* impact of COVID delays currently discussed
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Mu2e Collaboration

More than 200 scientists from 38 institutions:
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