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Introduction   

It will fall to members of the Mu2e collaboration to prove that the spectrometer’s line 
shape and energy scale near the electron spectrum endpoint are well understood. Any 
claimed observation of a conversion signal is unlikely to be accepted by our colleagues 
without a clear demonstration of this. An ideal calibration technique would permit the 
collaboration to gauge the precision, absolute energy scale, and level of systematic 
uncertainties associated with the spectrometer during the time that the experiment is live, 
recording physics data for the Al Aleμ − −→  search. Such a calibration technique might 
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be realizable through the installation of a suitable electron linac. The linac could be 
designed around a spare Project-X cryomodule or an upgraded AØ Photoinjector.1 
 
How might electrons from the linac be injected on-orbit so that they follow trajectories 
typical of signal electrons? In Ref. [1] I discussed a downstream injection scheme which 
would necessitate a reconfiguration of the calorimeter. Another possibility to consider, 
suggested by Yuri Kolomensky, would be to inject electrons down the solenoid axis, then 
scatter them on-orbit via elastic collisions in a thin target.  
 
How well might this elastic scattering approach work? Would the number of electrons 
per injected bunch (in order to have one electron scatter properly) be sufficiently small 
that the extra noise in the spectrometer would be minimal? I discuss the feasibility of this 
technique in this note. 
 
 

Elastic scattering  

The design of the Mu2e detector exploits the limited volume of phase space occupied by 
signal electrons of interest, namely those with momenta ~105 MeV/c that leave the 
stopping target roughly 90º from the detector solenoid’s central axis. As a result, a 
calibration scheme in which we inject electrons along a magnetic field line, parallel to the 
solenoid axis, will necessarily require that an electron scatter through a large angle in 
order to find itself following a path characteristic of signal electrons.  

Nonrelativistic trajectories under the influence of inverse-square central forces 
To begin our discussion, consider non-relativistic elastic scattering of two particles that 
interact through a central force. This is a situation familiar from undergraduate 
mechanics: particle trajectories will satisfy the equation2 
 

 ( )
2

2

2 2

1
1

d
rr F r

d r J
μ

θ

⎛ ⎞
⎜ ⎟
⎝ ⎠ + = −  [1] 

 
where ( )1 2 1 2m m m mμ ≡ +  is the reduced mass, 2 1r x x≡ −  is the separation between the 

particles, J is magnitude of the system’s (conserved) angular momentum, and ( )F r  is 

                                                 
 
1 See George Gollin, On the possible construction of a Mu2e calibration linac built around a spare 
Project-X or ILC cryomodule, July 25, 2008, http://www.hep.uiuc.edu/home/g-
gollin/mu2e/cryomodule_linac_for_mu2e_v3.pdf.  
2 See, for example, Jerry B. Marion and Stephen T. Thornton, Classical Dynamics of Particles and 
Systems,4th Edition, Saunders College Publishing, New York (1995), equation 8.21 on page 297. A more 
detailed development can be found beginning on page 217 of Classical Mechanics and Relativity II:  
http://www.hep.uiuc.edu/home/g-gollin/Physics_326_fall_2008_lecture_notes.pdf. 
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the (central) force acting between the particles. (The sign of F is negative for an attractive 
force, and positive for a repulsive force.) 
 
When the force experienced by one particle arises from the electrostatic (or gravitational) 
field of a second particle, the right side of Eqn. [1] becomes a constant, yielding an 
inhomogeneous harmonic oscillator equation in 1 r . Since we are working with electron-
nucleus scattering, let’s define the force to be ( ) 2 ,F r rκ≡ −  where κ is positive, and 
assume that the total energy E is positive.  
 
After a small amount of algebra, Eqn. [1] is found to have the solution 
 

( ) ( )2

1 cosA
r J

μκ θ ϕ
θ

= + +  

 
where the appropriate value of A can be determined, for example, using the values of the 
system’s total energy and angular momentum. The phase ϕ  is arbitrary, and depends on 
the orientation of the coordinate axes used in the problem. 
 
One can show that the relationship between A, J, and E is 
 

2 2

2

21AJ EJ
μκ μκ

= + . 

 
If we define  

2Jα
μκ

≡  and 
2

2

21 EJε
μκ

≡ +  

 
we can rewrite the ( )r θ  equation as 
 

( ) ( )1 cos
r αθ

ε θ
=

+
 

 
where I’ve picked the orientation of the coordinate axes so that 0.ϕ =  
 
This is the general equation for a conic section; ε is called the eccentricity of the curve 
while α is the semilatus rectum. The resulting trajectories ( )r θ  obey this equation 
regardless of whether the force is attractive or repulsive.  
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Nonrelativistic Coulomb scattering 

The following diagram illustrates the angles in the case of scattering by a repulsive force. 
Note that as r → ∞  the angle θ approaches θin, θout. Also note the symmetry about the 
horizontal axis, forced by the choice 0.ϕ =  I’ve indicated the particle’s impact parameter 
b in the diagram. 
 

 
 
  
 
The scattering angle scatθ  is not the same thing as out inθ θ− : a particle which is not 
influenced at all by the force center will have out inθ θ π− = . Rather, we need to work with 
the amount of change in the particle’s direction of travel, which is scat out inθ θ π θ= − − . 
The angles  θin, θout correspond to values for which the denominator in our expression for 

( )r θ  becomes zero: cos cos 1in outθ θ ε= = − . After some algebra we find 
 

 ( ) ( )
( )

2

2

2 1
cos

2 1scat

Eb
Eb

κ
θ

κ

−
=

+
 [2] 

where b is the impact parameter.  
 
We can manipulate Eqn. [2] to derive an expression for the impact parameter b as a 
function of scattering angle scatθ : 
 

 ( ) cot
2 2

scat
scatb

E
θκθ =    or   ( ) 1 22cot .scat

Ebbθ
κ

− ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 [3] 
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Naturally, if our force didn’t behave like 21 r , we’d obtain a different relationship 
between scatθ  and the impact parameter b. 
 
In a scattering experiment we generally do not measure the impact parameter directly. 
Rather, while subjecting a small target to an incident beam flux of N particles per unit 
area, we determine the relative numbers of particles that scatter at different angles scatθ  as 
shown in the following diagram. 
 

 
 
All particles with impact parameters between b and b+db will scatter into the detector 
with scattering angles between θ and θ+dθ. Since the surface area of a ring with radius b 
and thickness db is 2πbdb we expect that dN = 2πbNdb particles will scatter into the 
range θ to θ+dθ. 
 
Differentiation of Eqns. [3] with respect to θ allows us to determine db dθ  and .dN dθ  
The solid angle dΩ subtended by the region between θ and θ+dθ is 2 sind dπ θ θΩ =  so 
we conclude that 
 

( )

2

4

sin2
4 sin 2

dN N
d E

κ θπ
θ θ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

and 

( )

2

4

1
4 sin 2

dN N
d E

κ
θ

⎛ ⎞= ⎜ ⎟Ω ⎝ ⎠
. 

 
Defining the differential cross section ( )1d d N dN dσ Ω ≡ Ω  yields the Coulomb 
differential cross section: 

 
( )

2

4

1 1
4 sin 2

d dN
d N d E

σ κ
θ

⎛ ⎞= = ⎜ ⎟Ω Ω ⎝ ⎠
. [4] 
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annulus of radius b, thickness db, in a plane 
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Note that the total Coulomb cross section ( )tot d d dσ σ= Ω Ω∫  is infinite, due to the 
long-range nature of the Coulomb potential. (Witness the quartic divergence of the 
denominator at small angles.) However, thanks to the shielding of the nuclear charge by 
orbiting electrons, this divergence does not pose practical problems.  

Geiger, Marsden, and Rutherford 

Geiger, Marsden, and Rutherford observed the scattering of alpha particles emitted by 
radium in a thin gold foil. It is likely that the “beam” was produced by collimating 4.871 
MeV alphas emitted by a sample of the naturally occurring 228Ra isotope. In that the 
atomic number of gold is 79, we can calculate the differential cross section and impact 
parameter vs. angle relationships for the interactions they had observed.  
 
Converting to S.I. units, the alpha particle energy becomes E = 7.804×10-13 J. The 
proportionality constant κ  for the force acting on the alpha is 04goldQ Qα πε  so that  

263.64 10κ −= ×  and 144.67 10Eκ −= × . With this, we can recast Eqns. [3] as 
 

 ( ) 142.33 10 cot
2

Au
Aub α

α
θθ − −

− = ×    or   ( ) ( )1 132cot 4.29 10 .Au b bαθ −
− = ×  

 
90Auαθ − = ° scattering results from an impact parameter 142.33 10 mb −= × , roughly three 

times larger than the 15~ 7 10 m−×  nuclear radius of  197Au.3 
 
Also in S.I. units, the differential cross section for alpha-gold scattering (expressed in 
units of m2 since solid angle dΩ is dimensionless) is 
 

( )
28

4

1.36 10
sin 2Au

d
d α

σ
θ

−

−

×
=

Ω
. 

A common practical unit used in discussing relativistic scattering is the barn (as in “as 
big as a barn”4), with 1 barn = 10-28 m2. 
 

Relativistic modifications 

The description of the scattering process changes when one or both of the colliding 
particles is moving at relativistic speed. Even so, relativistic dynamics preserves two of 
the central features of non-relativistic mechanics: the connection between impulse and 
force, namely ,dp Fdt=  and the work-energy theorem, dE F dx= ⋅ . (Naturally, dp  is the 

                                                 
 
3 See, for example, Landolt-Börnstein, Nuclear Charge Radii, Volume 20 of Group I Elementary Particles, 
Nuclei and Atoms, pp 1-4, Springer Berlin Heidelberg (2004): 
http://www.springerlink.com/content/tvu6741611565jj6/fulltext.pdf  
4 See “Hitting the broad side of a (classified) barn,” Symmetry Magazine, February, 2006, for the origin of 
this term: http://www.symmetrymagazine.org/cms/?pid=1000258. 
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change in a particle’s three-momentum, while dE  is the change in its total energy.) 
However, the relativistic expression for vector momentum is p mvγ=  rather than 

.p mv=  As a result, small changes in speed effect dramatic changes in γ  for a fast 
particle so that force is no longer proportional to acceleration. In addition, a force applied 
perpendicular to a particle’s velocity drives changes in  mvγ  rather than mv  so the 
transverse deflection that results is smaller by a factor of γ  than in the non-relativistic 
case.5 
 
Combining all the relativistic effects reveals this connection between applied force and 
change in three-vector velocity: 
 

21 01 .
0 1

a dv dt F
a

a dv dt Fm
γ

γ⊥ ⊥ ⊥

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ≡ = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
 

 
Naturally, the subscripts  and ⊥  refer to components of the three-vectors parallel and 
perpendicular to the particle’s velocity. 
 
The different force-acceleration relationship modifies the scattering process so that it no 
longer exhibits the form found by Rutherford. In addition, the quantum mechanics of 
scattering (in which we must average over incoming electron polarizations and sum over 
outgoing electron polarizations) plays a role. The correct relativistic expression for an 
electron scattering off a heavy point target is the Mott scattering cross section: 
 

( ) ( )
2

2 4 2 2 2
2 2 2 cos 2

2 sin 2Mott

d m c p c
d p c

σ κ θ
θ

⎛ ⎞
⎡ ⎤= +⎜ ⎟ ⎣ ⎦⎜ ⎟Ω ⎝ ⎠

. 

 
In this expression p p mvγ≡ = . Note that the Mott scattering formula ignores the 
effects of nuclear recoil. 
 
In the nonrelativistic limit where 2 2 2 4p c m c  we have 
 

( ) ( )

2 22

2 2 2 2 4

1
2 sin 2 4 sin 2Mott

d mc
d m v c E

σ κ κ
θ θ

⎛ ⎞ ⎛ ⎞→ =⎜ ⎟ ⎜ ⎟⎜ ⎟Ω ⎝ ⎠⎝ ⎠
, 

 
which is just the nonrelativistic scattering cross section described previously. 

                                                 
 
5 Again, see appropriate sections of Thornton and Marion, or my development beginning on page 395 of 
Classical Mechanics and Relativity II: http://www.hep.uiuc.edu/home/g-
gollin/Physics_326_fall_2008_lecture_notes.pdf. 
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Hyper relativistic Coulomb scattering 

Calibration electrons that would be of interest to Mu2e will be traveling close to the 
speed of light. In this case the Mott cross section simplifies: 2 2 2 2 4 2 2E p c m c p c= + ≈  so 
that  

( )
( )

2

2

cos 2
2 sin 2Mott

d
d E

κ θσ
θ

⎛ ⎞
≈ ⎜ ⎟⎜ ⎟Ω ⎝ ⎠

 

as long as ( )cos 2θ  is not so small as to make the approximation 

( ) ( )2 4 2 2 2 2 2 2cos 2 cos 2m c p c p cθ θ+ ≈  invalid, as would happen for 180 .θ ≈ °  
 
We can reverse-engineer the expression for the cross section to determine the relationship 
between scattering angle and impact parameter. Since the scattering angle decreases 
monotonically with impact parameter, we can write 
 

( )
min min

2
2

min
0

2 sind db d d
d d

ϕ πθ π θ π

θ θ ϕ θ θ

σ σπ θ π θ θ
== =

= = =

= Ω =⎡ ⎤⎣ ⎦ Ω Ω∫ ∫ ∫ . 

 
The integral, using the approximation for the Mott scattering cross section, can be 
evaluated without difficulty to yield 
 

 ( ) ( ) ( )( )2

1 2 ln sin 2 1 
sin 2

b
E
κθ θ

θ
= + − . [5] 

 
 

In the case 90θ = °  the square root evaluates to 0.554 so that ( )90 0.554b Eκ° = .  
 
It is amusing to see how similar the Mott cross section calculation of impact parameter 
for a 90° scatter is to the result for nonrelativistic scattering at the same angle, as 

represented by the first of Eqns.[3]: ( ) ( )cot 90 0.5
2 2

scat
scatb b E

E
θκθ κ= ⇒ ° = . Bear in 

mind that the energy E in the nonrelativistic expression represents only the particle’s 
kinetic energy, not its total energy 2 2 2 2mc mc mvγ ≈ + .  
 

Nuclear effects 

The Mott scattering formula describes electron scattering from a heavy point charge, 
ignoring the recoil of the nucleus as well as any softening of the collision due to the non-
pointlike charge distribution of the nucleus. 
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Bjorken and Drell discuss the recoil correction in Relativistic Quantum Mechanics6, 
showing that the correction to the scattering cross section can be written this way: 
 

( ) ( )2 .
1 2 sin 2

Mott

d E E d
d E M d

σ σ
θ

′
= ×

Ω + Ω
 

 
In this expression E and E' are the initial and final electron energies while M is the mass 
of the target nucleus.  
 
For gold (atomic weight 197) the nuclear mass is M = 184.79 GeV/c2. As a result, the 
2E M  term is responsible for a correction that is typically 0.1% at most. The E E′  
numerator is nearly unity: a gold nucleus recoiling with momentum 105 MeV/c carries 
off only 30 keV so that the energy lost by a 105 MeV electron is ~0.03% of its original 
energy. As a result, it is safe to ignore recoil effects. 
 
The finite size of the nucleus also bears consideration. The radius of a gold nucleus is 
about 7 fermis; if the electron’s impact parameter is appreciably smaller than this some 
modification of the scattering cross section will be necessary. I had showed that the 
impact parameter for a 90° scatter is ( )90 0.554b Eκ° =  where 

26
04 1.82 10gold beamQ Qκ πε −= ≈ × for an electron beam and E = 1.68×10-11 J for an 

electron energy of 105 MeV. The (point source) Mott scattering calculation yields 
151.08 10Eκ −≈ ×  so that ( ) 1590 0.6 10 m,b −° ≈ ×  much smaller than the nuclear radius. 

For an angle of 60° the required impact parameter is still small, approximately 1.3 fermis. 
 
This would suggest that a gold nucleus does not have the single-scattering power to effect 
such a large change in direction of a 105 MeV electron. Eqn. [5] reveals that a scattering 
angle of 15.5° corresponds to an impact parameter of 7.1 fermis. Significantly larger 
angles, corresponding to smaller impact parameters, require the electron to pass through 
the nucleus. Clearly, the cross section to scatter through an angle at least as large as  60° 
will be considerably smaller than ( ) 2 30 260 5.9 10 m .059 barns.bπ −° ≈ × =⎡ ⎤⎣ ⎦  
 

Radiative processes 

I haven't included an estimate of energy loss due to radiation by the electron during the 
scattering process.  
 
In my experience, electrodynamic processes such as ILC beamstrahlung are described 
surprisingly well with classical, Jackson-style estimates for the radiation. It is quite likely 
that deflecting a 105 MeV/c electron through 60 degrees in the hundred fermi path length 
                                                 
 
6 James D. Bjorken and Sidney D. Drell, Relativistic Quantum Mechanics, McGraw-Hill, New York, page 
115 (1964).  
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through which most of the scattering impulse is applied will tend to inflict significant 
radiative energy loss on the incident electron.  
 
Since the Mott cross section is calculated for a collision in which no radiation is emitted, 
it is likely that the large-angle scattering-with-radiation cross section will be larger than 
the Mott cross section. If this is the case it will introduce uncertainty in the actual energy 
of any large-angle scatters that are observed in the spectrometer.  
 

Thin target scattering 

Let’s assume that a .001 radiation length gold foil target is used to scatter 105 MeV 
electrons, and that 60θ ≥ °  scattering cross section is 30 2

60 5 10 m .σ −
≥ ° = ×  What is the 

scattering rate per electron incident on the target? 
 
The radiation length of gold is 2 2

0 6.46 g cm 64.6 kg mX − −= ⋅ = ⋅ and its density is 
3 3 319.32 g cm 19.32 10  kg m .ρ − −= ⋅ = × ⋅ 7 As a result, a .001 radiation length foil will 

have thickness 3
010 3.34 μm.t X ρ−= =  The number of gold nuclei (each of which 

presents a scattering cross section of .059 barns) in a one square meter sheet of gold that 
is 3.34 μm thick is 1000A AuN VN Aρ= × 3 6 2619.32 10 3.34 10 6.022 10 196.97−= × × × × ×  

231.97 10 .= ×  (NA is Avogadro’s Number.) With a cross section 30 2
60 5 10 mσ −

≥ ° = × , the 
probability that a single electron will scatter while passing through the gold foil is 

23 30
60 1.97 10 5 10P −

≥ ° = × × ×  6 60.99 10 10 .− −= × ≈  
 

Calibration running 

The most useful mode for accumulating calibration data will be to inject electrons 
periodically during actual data taking, with the period adjusted so that only a small 
fraction of muon beam bursts include a calibration shot from the linac. 
 
One candidate linac that might become available is the AØ photoinjector, which could be 
upgraded to provide electrons of sufficiently high energy. Currently AØ can run at 10 Hz; 
if this rep rate were to be used for Mu2e, an intensity of 105 delivered electrons per linac 
shot would provide about one 60≥ °calibration electron per second. (The reduction in 

60≥ °  scattering rate due to the finite nuclear size would necessitate an even higher 
electron flux.) 
 
This seems like an uncomfortable large rate to me. It is a concern that the high 
instantaneous intensity from the linac might alter the detector environment sufficiently to 
complicate the use of calibration electrons in determining the spectrometer line shape. 
 
                                                 
 
7 “Review of Particle Properties,” Particle Data Group, Physics Letters B, 667, p. 110 (September 18, 2008) 
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Conclusion 

Elastic scattering of 105 MeV electrons from a .001 X0 gold target inside the Mu2e 
solenoid is unlikely to provide a sufficiently large number of calibration electrons to the 
collaboration to resolve the complex problems of determining line shape during actual 
physics running. The small scattering cross section would require more than 10 TeV of 
energy, carried by a sub-nanosecond bunch of well over 105 electrons, to be injected into 
the detector solenoid at 10 Hz. This is likely to complicate the comparison of the 
calibration environment with the standard data taking environment at Mu2e.  


