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3¢ What is ue Conversion’?
= - N

e
R, =

MNp+(A,2) > v, + (A, Z-1)

~& 1 changes into e in the field of a nucleus
without v emission

& Charged Lepton Flavor Violation
(CLEV)

105 MeV e-

& Related Processes: u—ey, u—e“ee,
Ki—ue

R. Bernstein, FNAL 3 NP’08 6 March 2008



4= Motivation

& 7’s have mass! Therefore individual lepton numbers
are not good quantum numbers

- Therefore Lepton Flavor Violation occurs in
Charged Leptons as well

'I'["'— - - S

e
;-[_ E-.PIJ‘-I ‘l"lrk E-I!-:ﬁ. f"_

~¢ Except neutrinos have to change flavor in loop...

2
3o Amlz

BR(p — ey) = - Z Ui M2 == @
T—25

~& But this 1s good! New physics not hidden by boring
old neutrino oscillations (yesterday’s signal 1s today's

calibration 1s tomorrow’s background)
R. Bernstein, FNAL 4 NP’08 6 March 2008



2= Contributions to ue

Conversion
Neutrino Mass SuperSymmetry

K!.I

Figure 1.1: The leading Standard Model diagram for g+N — e+N 15 shown on the left. The center and right
ficures are the dominant SUSY diagrams.
& Probe of Supersymmetry; complementary to LHC
and pushes beyond LHC sensitivity

~& (QObservation of neutrino mass, interpreted in SeeSaw,

. : Blanke etal:
points to observable CLFV in many models hep-ph/0702136

R. Bernstein, FNAL 5 NP’08 6 March 2008
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ue

& Dipole/Penguin

Conversion and u—ey

&  Fermui Interaction

v

A

N

& This type of diagram gives & Corresponds to exchange of
rise to small CLFV through a new, massive flavor-
virtual neutrino mixing changing neutral current
particle e i
& Also contributes to p—ey if A? 1672 M2,
photon real LA, ~*  Doeds not produce ju—ey
[ K“»\Ke
Y
Lorrv = Eho e = pryser(Gpy*ur + dpy*dr)
(k + 1)A2 L (14 k)A2 5

R. Bernstein, FNAL 6

NP’08 6 March 2008



Jt. .
W —ey and ue Conversion@
Experimental Differences

Sy ¥ |I—e conversion

back monoenergetic particles particle

- limited by accidental

e ~& gingle particle signal is a
coincidences: u—evy and ek g

occasional coincidence with dlsadvantage, but:

photon leads to limit of 10-(13-14)
(for acceptable rate/running
time)

-+ signal electron at much higher
energy region than almost all

background

-+ signal e, ¥ in same energy
region as backgrounds

R. Bernstein, FNAL 7 NP’08 6 March 2008



4 History of CLLEFV Searches

from W. Molzon

102 LN ->eN -
= ° ut—e'y -
E 104 o U —>ee e —
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2 e
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aF QOverview of Reach &

André de Gouvéa, Project X Workshop Golden Book
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André de Gouvéa, Project X Workshop Golden Book
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Quick Tour of Expt

===

i

-

"

'l

Y H HH

\ FEIRE R R e
]

calorimeter/
trigger

-----
Simem Drmarsdiindinems Tarmad

R. Bernstein, FNAL 10 NP’08 6 March 2008
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Major Background
Types

& Muon Captured in Stopping Target: muon decays

& Decay In Orbat:

Into electron, electron energy near signal
~* Radiative u Capture: u Al =y v, Mg
~& Prompt:

& Protons Hit Production Target, produce 7’s
neutrons, and antiprotons which produce y—e”e,
sometimes with energy near u—e signal

R. Bernstein, FNAL 11 NP’08 6 March 2008
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4= Decay-1n-Orbit Background

& Fraction within 3 MeV of
signalis-5 x 102
~& High Rate
~& Rate falls as (Emax- E)°
& Peak 52.8 MeV

& PDrives Resolution
~& Detector tnsensilive to these Requirement

R. Bernstein, FNAL 12 NP’08 6 March 2008
12



4= Decay-1n-Orbit Background

Muon Conversion on Al

9
ln ...........
= | | S S S S S
° .............. .............. ............. .............
= WAL> e WAl oo,
] SIe
8
=
S 1
w TP SO
- |pe conversion Br=10"f ...
~¢ Fraction within 3 MeV of
signalis-5 x 102
10" e e
oo & Rate falls as (Emax~- E)°
bt lev il & DI’iVBSRESOlutiOIl

3.5 104 1045 105 1055 106 106.5 107
Electron Momentun, MeV/c Requirement

R. Bernstein, FNAL 12 NP’08 6 March 2008
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J
= Decay-In-Orbit Details

-+  Ee(max)= (muc? - NuclearRecoil Energy
-AtomicBindingEnergy)

looks exactly like signal
~ For Z=13 (Al), Atomic BE=0.529 MeV,

Recoil energy=0.208 MeV — Ee(max) except fOl" electron energy
=104.96 MeV
1ol . + 0t o + I , .I ’integral flu)I:: o
-+  Rate near the maximum energy falls 0:1 I S cifierental i
very rapidly. Near endpoint: oot} .
proportional to (Ee(max)-E)° §°-°°1 - .
> l.e-4 +
% 1e-51L +
~  Major potential source of background-3 1.6 _ ©
Discriminate against it with good z T AIN,:UOS de(éayt II;I C
electron energy resolution, ~1 MeV LR S _Oun Stae, .
FWHM for p2e 1e9r  endpoint=104.96 MeV i
1.e-10
0 20 100

0 50
é‘l ectron Energy [Me'V]

R. Bernstein, FNAL 13 NP’08 6 March 2008

13



3¢ Prompt Backgrounds

~&  Prompt: particles produced by proton pulse which interact almost
immediately when they enter the detector region: T,neutrons,
pbars
ol = Al

~& Radiative pion capture, T +A(N,Z)->y+X.

“® yup to mzg, y— e*e ; if one electron ~ 100 MeV 1n the

target, looks like signal. Major limitation in best existing

experiment, SINDRUM II.

& Beam electrons: incident on the stopping target and scatter
into the detector region. Need to suppress e with E>100
MeV near signal

& In-flight muon decays yielding electrons: since not stopped,

can have enough momentum to fake signal (> 76 MeV/c)

R. Bernstein, FNAL 14 NP’08 6 March 2008
14



2t Choice of Stopping
Matenal

“® Stop muons 1n target

(Z,A)
. = Rate
& Physics sensitive to Z: _
with signal, can switch
target to probe source N
of new physics N
& Why start with Al? 7

rate normalized to Al

R. Bernstein, FNAL 15 NP’08 6 March 2008
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#Signal in Stopping Target

target foils

R. Bernstein, FNAL 16 NP’08 6 March 2008
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#Signal in Stopping Target

target foils

ull
il

R. Bernstein, FNAL 16 NP’08 6 March 2008
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#Signal in Stopping Target

tanocklollcs—=

I
| | |

R. Bernstein, FNAL 16 NP’08 6 March 2008
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#Signal in Stopping Target

tanocklollcs—=

Il
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#Signal in Stopping Target

tanocklollcs—=

I
| | |
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#Signal in Stopping Target

tarpetionics -

P prompt!

€

delayed 105 MeV electron

R. Bernstein, FNAL 16 NP’08 6 March 2008
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#Signal in Stopping Target

tanocklollcs—=

delayed 105 MeV electron
Signal 1s single, monoenergetic electron

occurring after bunch passes: want this
delay to be long to reduce prompt

R. Bernstein, FNAL 16 NP’08 6 March 2008
16



#Signal in Stopping Target

tanocklollcs—=

~* need good momentum resolution

> - need particle ID (calorimeter)

~& need a bunched beam!

E prompt!

delayed 105 MeV electron
Signal 1s single, monoenergetic electron

occurring after bunch passes: want this
delay to be long to reduce prompt

R. Bernstein, FNAL 16 NP’08 6 March 2008
16



2& Prompt Bkg and Choice
t Z

etween rate and hifetime: longer

ChOOS@ Z based on tradeoff(g

lived reduces prompt backgrounds
Siapdo e A e e ol Eioh decay
Nucleus |Rue(Z)/ Rue(Al) Capture Energy
Time (1s) Energy >700 ns
Al(13,27) |11.0 880 nsec |0.47 MeV 104.96 MeV  |0.45
Ti(22,~48)|1.7 328 nsec |1.36 MeV 104.18 MeV  |0.16
Au(79,~197)|~0.8-1.5 72.6 nsec |10.08 MeV 95.56 MeV  |negligible

too short‘}o\rFNAL beam pulse; need short

pulse to eliminate prompt backgrounds

NP’08 6 March 2008

17
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3

Existing Limits
Prompt
Background

Cosmic Ray
Backgrod

A —RES 60
in Au

(SINDRUM-ITI)

¢ Want to probe to

uon Deca
10-16 or better C !

in Orbit -+ u—e conversion at
" BR=4x10"

co _IIIII|

~» Factor of =104
improvement

5 90 95 100 105 110 115 120
total e energy in (MeV)

non-trivial Experimental signature is 105 MeV e-

originating in a thin Ti stopping target

R. Bernstein, FNAL 18 NP’08 6 March 2008
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32 SINDRUM II Results

= SINDRUM I run2000: lLe conversion on gold

& Final \tgk i h

SINDRUM-II

- .
on Au g
B e” momentum (MeV/c)
N e o
o > ... .. beam
& Note Two e
[72] ..
Background 5 f &
, _ 2
Events past e e oeam 1 n@? eTor
% . ] h\/ g @“ g
Signal Region ] { 7 =
: UWAU— eVVAU ‘ ‘ ‘ >
: = f \raatwe T or
~ Multiply z \ i =
LAU— eAu =
Problemos by N ass S

] 04 ? 75 80 85 90 95 100 105

e momentum (MeV/c)

July 14, 2001 HEP 2001 (W.Bertl - SINDRUM Il collaboration )

R. Bernstein, FNAL 19 NP’08 6 March 2008
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a# Key Improvement of @
Both COMET and uZ2e

ﬁﬁ PABE SCHERRER 1HSTIVE

Background : b) pion induced SINDRUM:
a)straight line

Radiative Pion Capture (RPC): 7T Au —> Y + Pt" followedby ¥ —> €' €

Kinematic endpoint of photon spectrum around 130 MeV'!  Branching ratio of order 2%. f

No way to distinguish an asymmetric e* e -pair (with little e* energy and e~ energy at 95 MeV) from ue ! r O m tar g et to
=> Needs strong pion suppression : only ~ 1 pion every 5 minutes is allowed to reach gold target!

e | detector

beamline to and & 's by their different
positron distributions suppress high stopping power. Penetrating

< 75 ey nomentui-tait SIO/W pions decay in PMC. b) C O ntinu Ou S

ENTRIES . 402 . .
[emes” - i " BUT: Degrader is now pion TE \ ‘ ‘
stop target — e*e pairs 5

from RPC are collected by ‘
Bpyc and transported v L - J b e al I I

° dz(cm)

w X towards the gold target i ‘

5 10 15 20 g
rf. phase (ns) where they may scatter into b

PMC
spectrometer acceptance

ENTRES o (typ. forward scattering) T —Za
W ;}F ¥
. ) in phase | F=mre =

=> use solid angle and
cyclotron phase ‘ ‘ \ LS‘[NDR JM\

AREE correlation to cut. |
70 80 90 100 ‘ ‘

E (MeV)
July 14, 2001 HEP 2001 (W.Bert! - SINDRUM Il collaboration )

= dz(cm)

R. Bernstein, FNAL 20 NP’08 6 March 2008
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Jt.
= u2e at FNAL

~& |mprovements:
¢ >10° increase in muon intensity from SINDRUM

¢ Curved Transport Solenoid and Pulsed Beam to
Eliminate prompt backgrounds(Radiative )

& SINDRUM was continuous beam

& 1n MuZe, pulsed beam! but must achieve required
10~ extinction and meadure it

~& Tracker Resolution Critical for Decay-In-Orbit
Rejection

R. Bernstein, FNAL 21 NP’08 6 March 2008
21
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Pulsed Beam

& Beam pulse duration << 74, Pulse separation = 1,
& [arge duty cycle 756-90% depending on scheme
& Extinction between pulses < 10 needed

~& # protons out of pulse/# protons in pulse

< 1,694 ns >

~3x107 p/bunch

100 ns

700 ns Detector live

Inter-bunch / Ff 900 ns 4’|

extinction ~10°

R. Bernstein, FNAL NP’08 6 March 2008
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3 Measuring Extinction
Rate

~& Protons in beam between pulses:

QOut of time beam

— ; —

7

Dipole synchronized Matched dipole
to bunch spacing Collimator(s)

& “Switch” dipole timing to eliminate bunches, accept out-
of-time protons for direct measurement

~& QOther schemes under Investigation

& Measurement: off-angle collimators and telescope?

R. Bernstein, FNAL 23 NP’08 6 March 2008
23
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Outline of Remainder
§ GeV Power
~& Beam pre- and post-Project X: |
20 kW
& how do we get muons to target? how (current)
many? time structure? '
~& Detector: 200 kW
(Project X)
~* How Do We Achieve Required |
Rejection and Resolution? 2000 kW

-+ Before we get into details on rates, how  (Project X
does this compare to MECO? Upgrades)

R. Bernstein, FNAL 24 NP’08 6 March 2008
24
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Intensity Summary

18x1012

Mu2e

MuZ2e Booster Project X, no
expt. upgrade expt. upgrade

70x10'?

MuZ2e Project
X,

160x10'2

R. Bernstein, FNAL

protons/sec 40x10'? (design)
B G 23 kW 90 kW 200 kW
power
duty factor 63 Ogbg/f i 75-90% 75-90% 75-90%
Instantaneous rate | 80x1012 (design) 20x1012 77x1012 220x1012
O T D L W (i) 25 kW 100 kW 220 kW
power
Beam pulse period, 1.35 s 1.65 1.65
msecC
Data collection (EEEe 0.7-1.65 e Sere
time interval msec
25 NP’08 6 March 2008




o G
L. 3

Intensity Summary

point of this slide: it MECO worked, u2e at FNAL works:
pre-project X or with Project X

Mu2e MuZ2e Project
MuZ2e Booster Project X, no X,
expt. upgrade expt. upgrade
protons/sec 40x10'? (design) 18x1012 70x1012 160x10!2
B G 23 kW 90 kW 200 kW
power
duty factor 08 02’08(')5 Sl 75-90% 75-90% 75-90%
instantaneous rate | 80x10'? (design) 20x1012 77x1012 220x1012
O T D L W (i) 925 kW 100 kW 990 kW
power
B 1.35 565 1.65 165
msecC
B Galizh e 0.7-1.35 0.7-1.65 0.7-1.65 0.7-1.65
time interval msec

R. Bernstein, FNAL

25

NP’08 6 March 2008
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Quick Fermilab

~» Booster:

& The Booster accelerates
protons from the 400 MeV
Linac to 8 GeV

~  Accumulator:

~» momentum stacking successive
pulses of antiprotons now, 8
GeV protons later

~ Debuncher:

2 o smooths out bunch structure to
stack more }; now; rebunch for
mule

S Recycler:

~  holds more p than Accumulator

can manage, “store” here
R. Bernstein, FNAL 26

Glossary

Energy :

®

1s* batch is injected onto the injection orbit

15t batch is accelerated to the core orbit

2nd Batch is injected

2nd Batch is accelerated

3rd Batch is injected

T<66ms

T=67ms

NP’08 6 March 2008

26



3¢  NovA Era and u2e

“® [oad from Booster to Recycler; Booster ‘ticks’ at

4512, 15 Hz

L0100
booster batches

& Single-Turn Transfer to MI

S
R. Bernstein, FNAL NP’08 6 March 2008
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3¢  NovA Era and u2e

~® [oad from Booster to Recycler; Booster ‘ticks’ at

SR Slioetsl

protons in Recycler,
loading from Booster

plannnd
booster batches

& Single-Turn Transfer to MI

S
R. Bernstein, FNAL NP’08 6 March 2008
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3¢  NovA Era and u2e

~® [oad from Booster to Recycler; Booster ‘ticks’ at

SR Slioetsl

protons in Recycler,
loading from Booster

plannnd
booster batches

~® Single-Turn Transfer to MI

e

protons in MI

S
R. Bernstein, FNAL NP’08 6 March 2008
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3¢  NovA Era and u2e

~® [oad from Booster to Recycler; Booster ‘ticks’ at

SR Slioetsl

protons in Recycler,
loading from Booster

plannnd
booster batches

~® Single-Turn Transfer to MI

e

protons in MI

ramp beam up to 120 GeV, extract, then ramp magnets down

S
R. Bernstein, FNAL NP’08 6 March 2008
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Together...

protons in Recycler,
loading from Booster

> 20/15 =1.33 sec

otons in M1

ramp beam up to 120 GeV, extract, then ramp magnets down

R. Bernstein, FNAL 28 NP’08 6 March 2008
28



he

All Together...

protons in Recycler,
loading from Booster

> 20/15 =1.33 sec

otons in M1

ramp beam up to 120 GeV, extract, then ramp magnets down

R. Bernstein, FNAL 28 NP’08 6 March 2008
28



3F All Together...

can fit eight

extra Booster
batches for us!

protons in Recycler,
loading from Booster

(can use 0)

> 20/15 =1.33 sec

otons in M1

ramp beam up to 120 GeV, extract, then ramp magnets down

-

R. Bernstein, FNAL 28 NP’08 6 March 2008
28




3 Booster—Era
(before Project X)

New beam line and
experimental hall

Debuncher and

Accumulator rirFs
were used for p

~& After TeVatron shut-down, Accumulator, Debuncher, and

Recycler “freed” from antiprotons

R. Bernstein, FNAL 29 NP’08 6 March 2008
29
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“Boomerang Scheme”

~& Booster Batches transported one scheme—there are others
partway through Recycler and

injected directly into Accumulator

& “Momentum-Stack” batches in

Accumulator

harey beam ine and

~& Transfer to Debuncher
~& Rebunch into Single Bunch:

& 38 nsec RMS, £200 MeV

~& Slow Extraction: transverse, yields
bunch “train”

R. Bernstein, FNAL 30 NP’08 6 March 2008
30



o G
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“Boomerang Scheme”

~& Booster Batches transported one scheme—there are others
partway through Recycler and

injected directly into Accumulator

&  “Momentum-Stack” batches in = .
:...-__- l-—!::.-_:_l-___l_ §
Accumulator i i il
1 .-1...'._
:Il" 5 ri.r
~& Transfer to Debuncher % i
~& Rebunch into Single Bunch: %! A

& 38 nsec RMS, £200 MeV
DebuncheEr and

~&  Slow Extraction: transverse, yields ACTUMUIAEET Angs

bunch “train”

R. Bernstein, FNAL 30 NP’08 6 March 2008
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o G
M

“Boomerang Scheme”

~& Booster Batches transported one scheme—there are others
partway through Recycler and

injected directly into Accumulator

&  “Momentum-Stack” batches in = .
:...-__- l-—!::.-_:_l-___l_ §
Accumulator i i il
1 .-1...'._
:Il" 5 ri.r
~& Transfer to Debuncher % i
~& Rebunch into Single Bunch: %! A

& 38 nsec RMS, £200 MeV
DebuncheEr and

~&  Slow Extraction: transverse, yields ACTUMUIAEET Angs

bunch “train” ,
more thts afternoon

R. Bernstein, FNAL 30 NP’08 6 March 2008
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3F Numerically,

~& can get 8 Booster Batches every 1.33 sec MI cycle, or 4.8E20/yr
(4E12/Booster Batch) from Booster

~& currently 10.5 Hz in Booster, need 15 Hz

~& |imits of Booster RF and radiation can be overcome with

some work

~& # of batches limited by longitudinal emittance in A/D to 6 of
8 (84 x .038 ev-sec)

&  Assume 3.6E20 = (6/8 X 4.8) in planning

~& This manipulation can produce out-of-bucket beam

-+ % extinction is important: must be controlled and measured

R. Bernstein, FNAL 31 NP’08 6 March 2008
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3% Project X Upgrades

~& Ultimate sensitivity would be provided by Project X linac as
proton source

& Deliver up to 200 kW average beam current:

& -3 x 10 protons/sec at 8 GeV (x10 previous slide)

& 9mA, |1 msec, 5 Hz
& Three Upgrades for x10 from 200 kW to 2000 kW at 8 GeV:

~& Increase Pulse Length
~& Increase Repetition Rate

i Increase Number Of Klystrons

R. Bernstein, FNAL 62 NP’08 6 March 2008
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3% Project X Upgrades

~& Ultimate sensitivity would be provided by Project X linac as
proton source

& Deliver up to 200 kW average beam current:

& -3 x 10 protons/sec at 8 GeV (x10 previous slide)

& 9mA, |1 msec, 5 Hz

& Three Upgrades for x10 from 200 kW to 2000 kW at 8 GeV:

need to understand how
& Increase Pulse Length

to push single-event
¢ Increase Repetition Rate SeIlSitiVity to use

additional capability

& Increase Number of Klystrons

R. Bernstein, FNAL 62 NP’08 6 March 2008
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2= Overview of Experiment‘

& Magnetic bottle trapping
backward-going pions

& Decay into muons and

Bl cn e Thia e =
B
]

transport to stopping target

backg rounds

P
T 2
T H=1H

& Thin windows for

5
-----
PR R e BT TR

antiprotons

~& Tracking

.....
imam Fhmm aly pomdlmgm "7 o peamn
---------

~& Crystal Calorimeter

R. Bernstein, FNAL o NP’08 6 March 2008
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2  Production Region

Euperconducting coils _

Proton
Beam

@eat & Radiation Shield = Production Targ@

~~  Axially graded 5 T solenoid captures low energy backward and reflected pions and
muons, transporting them toward the stopping target

~  Cu and W heat and radiation shield protects superconducting coils from effects of 50kW
primary proton beam: need upgrade from MECO design for > 50 kW

R. Bernstein, FNAL 34 NP’08 6 March 2008
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3¢ Transport Solenoid

~& Curved solenoid eliminates
line-of-sight transport of

photons and neutrons

Collimators k&

~& Curvature drift and and pBar
Window

collimators sign and
momentum select beam

& dB/ds < 0 in the straight _
sections to avoid trapping : 9 5T
which would result in long -

transit time 4o
30 [
20

10 B

o
—10 f

[
v i
— 20
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3¢ Transport Solenoid

~& Curved solenoid eliminates
line-of-sight transport of

photons and neutrons

Collimators K&

~& Curvature drift and and pBar
Window

collimators sign and

momentum select beam

& dB/ds < 0 in the straight

sections to avoid trapping

10 momentuQrI %Jticle blocked

which would result in long
by collimators

transit time a0 g
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3¢ Transport Solenoid

~& Curved solenoid eliminates
line-of-sight transport of

photons and neutrons

Collimators k&

~& Curvature drift and and pBar
Window

collimators sign and
momentum select beam

& dB/ds < 0 in the straight _
sections to avoid trapping : 9 5T
which would result in long -

transit time 4o
30 [
20

10 B

o
—10 f

[
v i
— 20

R. Bernstein, FNAL 35 NP’08 6 March 2008
35



3 Stopping Target Region

/DS Crynatat
I

T gutron shield
BEAM \‘W v .
G881 {Froton Shield)
ideaf Shupa7 Target

CH2 shields

& Conical Shield Reduces background and high rate

from protons produced in stopping target

~& Quter shield absorbs neutron cloud

R. Bernstein, FNAL
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Beam's Eye View of

Tracker

Octagon and Vanes of Straw /

Tubes _
pPTr =

105 MeV /c

Immersed in solenoidal field

[
| target
y g

Below pr = 565 MeV, electron

stays inside tracker and 1s pr = 55 MeW/c

not seen

Looking for helix as particle =

propagates downstream \H /

pr =91 MeV /c

Note: <0.3% of e- from DIO have pr>565 MeV/c

R. Bernstein, FNAL a7 NP’08 6 March 2008
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4= Detector

0=200pt =5 iall
& Octagon and Vanes of Straw p transverse mm axially

Tubes 2800 axial straw tubes, 2.6 m by 56 mm, 25p thick

1 ' t ke as CR shield
& Immersed in solenoidal field, L R R

so particle follows near-

helical path

~& up to dE/dx, scattering,

small variations in field

~& Particles with pr < 56 MeV
do not pass through detector,

but down the center

: B R I A S e PbWO
~& Followed by Calorimeter 5 = :

R. Bernstein, FNAL 38 NP’08 6 March 2008
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Details

38 -70 cm active radius

Geometry: Octagon with eight vanes, each

~30 cm wide x 2.6 m long / \
Straws: 2.9 m length 5mm dia., 25 mm % — 10:5”M6V/C \

wall thickness to minimize multiple
scattering — 2800 total

Three layers per plane, outer two resistive,
inner conducting

Pads: 30 cm 5mm wide cathode strips
affixed to outer straws - 16640 total pads

Position Resolution: 0.2 mm (r,9) X 1.5  pr = 55 MeV/c\
mm (z) per hit is goal

Energy loss and straggling in the target and
multiple scattering in the chambers
dominate energy resolution of 1 MeV

FWHM \~

R. Bernstein, FNAL 39 NP’08 6 March 2008
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Decay-In-Orbait

&

|
|

Everts f May

1625 103 1055 104 1045 106 1055 106

Mucn gecay In orbit

Muan corwersion simuladon

Eleciron Enargy (Me)

Log scale

R. Bernstein, FNAL

Evanis / May

Linear scale

(i)

A O AN &
%

ol

)

Lo

Qo3 055 06 1046 108 .

Eleciron Energy (Mey)

1065 106

40

ep=1x101%, Momentum resolution 1 MeV (FWHM)

1t

E it i W

Background/Signa

Acceptance and S/B as Einresh varied
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Backgrounds. =

Type Description

et beam electrons

¢ neutrons from muon capture in muon stopping target
Y photons from muon capture in muon stopping target
Dt protons from muon capture in muon stopping target

e(DIO), < 55

DIO from muon capture in muon stopping target, < 55 MeV

e(DIO); > 55

DIO from muon capture in muon stopping target, > 55 MeV

Nbd

neutrons from muon capture in beam stop

Yod

photons from muon capture in beam stop

B(DIO)bd =05

DIO from muon capture in beam stop, < 55 MeV

e(DIO)bd =0

DIO from muon capture in beam stop, > 55 MeV

e(DIF)

DIO between stopping target and beam stop

bd = albedo from beam stop (after calorimeter)

R. Bernstein, FNAL 41 NP’'08 6 March 2008
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Protons in
stopping (gt

R. Bernstein, FN¢

700 nsec

Rates vs. Time

nnnnnnn

0-1400

nsecC

Rate (15 MI‘?Z/WiI'e)

T

Rate (560 kHz/wire)
700-1400

nsecC

NP’08 6 March 2008
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Rates are manageable:

~ 2 hits per straw during beam flash

Rates In Tracker

Rates at Beginning of > 700 nsec Time Window, so these are highest

(1/4 of MECO instantaneous)

Type Rate(Hz) P hit Mean N hits/bkg part | Ryire (kHz)
e 0.62 x 10 | 0.00032 50, 16.3
n 0.62 x 10! | 0.000142 2.887 12

e 0.62 x 10** | 0.000248 4.524 33.4
Dy 4.5 x 10° 0.00362 6.263 50.
A T e P e L e e O H e | Em e e e 1.4
e(DIO); > 55 | 0.5 x 10° 0.00127 PIT. 0.5
Nbd DI = E e =2 =550 1.5
Yod DR S s e = s 515

I B Tt o A B e N e FEC L P e U P B 1.65
e(DIO)pg > 55 | 1.4 x 10° 158251022155 0.0125
e(DIF) 0.69 x 10° | 1 35.84 8.6
total 116

R. Bernstein, FNAL
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Jt : :
= Calculatlng Slgnal Rate

Running Time (sec) il ke
Proton Flux (Hz) B
U entering transport solenoid / incident proton 0.0043
i Stopping Probability 0.58

1 Capture Probability (normalization process) 0.60
Fraction of Capture in Time Window 0.49
Electron Trigger Efficiency 0.90
Geometrical Acceptance, Reconstruction, etc 0.19
Detected Events for Ry = 1016 5.0

R. Bernstein, FNAL 44 NP’08 6 March 2008
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2¢ Final Backgrounds

Number/

Source

4x10%°
DIO 025

& FOI‘ Rﬂe — 10_16 eXpeCt 5
events to 0.5 bkg

~+ Extinction factor of 10-° =
Radiative 7 capture 0.08

5 Signal u decay-in-flight 0.08
Scattered ¢ 0.04
7 DIF <0.004

R. Bernstein, FNAL 45 NP’08 6 March 2008
45



2 Summary of Capabilities

& Resolution

Pin dif Pin_dif
— ; Entries 79513
= -| Mean -0.09922
il .| RMS 0.3891
B T 92 nar 778.9/ 37
- . Constant 3710t 19.7
1 03 Mean -0.02407 + 0.00097
Sigma 0.1888 + 0.0002

T T TITTT]

102 ::ff

10 5

]II1I|1III|l||l]|l1|ll|l1||1

5 4 -3 2 1 0 1 2 3 4 5

R. Bernstein, FNAL

nsitivity
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&
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102 102.5 103 103.5 104 104.5 105 105.5 106 106.5 107
Electron Momentun, MeV/c
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Cost and Schedule
~$100M ~2014

A detailed cost estimate of the MECO experiment had been done just
before it was cancelled:

-+  Solenoids and cryogenics: $58M
~ Remainder of experimental apparatus: $27M

- Additional Fermilab costs have not been worked out in detail.
Recent Project X era planning exercise gives ~ $130M total cost.

Hope to begin Accelerator work along with NOvA: upgrade ~2010 (or
2011 if Run II extended)

~ Based on the original MECO proposal, we believe the experiment
could be operational within five years from the start of significant

funding
- Driven by magnet construction.

With the proposed beam delivery system, the experiment could collect
the nominal 3.6x10%° protons on target in one to two years, with no

impact on NOvA

R. Bernstein, FNAL 47 NP’08 6 March 2008

47



o G
M

Conclusions

Tools for Particle Physics

pp-bar

Intense proton
source for

accelerator B, C factories

Telescopes; based

Underground
experiments;

& The u2e experiment is an important measurement!

& [n the imitial phase (without Project X) we would either:

¢ Reduce the limit for Rye by more than four orders of

magnitude  (Ryue <6x10-17 @ 90% C.L.)
¢ Discover unambiguous proof of Beyond Standard Model

physics

& With a combination of Project X and/or improved muon

transport, we could either

- Extend the limit by up to two orders of magnitude

& Study the details of new physics

R. Bernstein, FNAL

NP’08 6 March 2008
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3 .
Backup Shdes

& Synergies with Neutrino Factory
& Cosmic-Ray Shield

& Acceptance of Calorimeter

R. Bernstein, FNAL 49 NP’08 6 March 2008
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aF Synergies with Neutrino
Factory?

~& There are a number of synergies between this project and muon cooling efforts

~ The Debuncher beam could be extracted in a single turn to produce the short,
intense bunch needed by muon production experiments

~»  Muon cooling studies have increased the understanding of solenoidal transport.

~» It is possible that a “helical cooling channel”, of the sort envisioned for muon
cooling, could generate a significantly higher muon yield for this experiment.

~  We will investigate these in more detail for the proposal.

~» A combination of increased flux from Project X and a more efficient muon
transport line could potentially result in a sensitivity as low as 1013

R. Bernstein, FNAL 50 NP’08 6 March 2008
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2t Cosmic Ray/Neutron

Sh

[] Heavy Shielding Blocks
Std Shielding Blocks
[ Steel Return Yoke
Zinc Blacks

[] scintiator Strips

[ B Unistrut Frames

Passive Shielding

BN EO

Active Shielding

O

- Three Layers of Scint

~& 92/3 coincidence

& [nefthciency < 104

Top View Layout of
Active & Passive
Shielding enclosing
the DS & half of TS

R. Bernstein, FNAL 51 NP’08 6 March 2008
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#&  Acceptance of

Calorimeter

~& Note Log
Scale

-+ High-Energy
Tails of DIO

do not swamp
trigger

R. Bernstein, FNAL

Geometrical Acceptance
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