
 art: A Framework For New,
Small Experiments at Fermilab

Rob Kutschke,
Fermilab CD and the Mu2e Collaboration

CHEP 2010, Academia Sinica, Taipei
October 21, 2010

Mu2e-doc-1127-v3

Mu2e

•  A proposed experiment, at Fermilab, to search for the
coherent, neutrino-less conversion of a muon into an
electron in the Coulomb field of a nucleus.
–  104 × better sensitivity than SINDRUM II
–  Sensitive to mass scales of 104 TeV.

•  Working schedule:
–  Construction start 2013
–  First data 2018.

•  mu2e.fnal.gov
•  ≈ 25k readout channels.

10/21/10 Kutschke/art 2

Infrastructure Software
•  Framework

–  The state machine that drives the event loop.
–  Services that are integral to the framework proper.
–  EDM in memory
–  Run-time configuration.

•  EDM persistency
•  Build management
•  Release management
•  Workflow management, including GRID
•  File catalog
•  Databases
•  Does not include:

–  Geometry, Conditions, Event Data classes, G4, reconstruction algorithms …

10/21/10 Kutschke/art 3

Framework is the glue that keeps all this together.

The Beginnings

•  Fall 2008: Mu2e needed infrastructure software:
–  Supported by FNAL Computing Division (CD).
–  Use cases: analysis, reconstruction, calibration, simulation,

lowest non-real-time level of DAQ/Monitoring.
–  Physicists see analysis first; has to be teachable.

•  Similar requests from
–  MicroBoone, NOvA, muon(g-2)

•  CD willing to provide this but …
–  O(2 FTE) for development and support.

•  Actually O(1 FTE) until mid 2010.

–  Principals: Jim Kowalkowski, Marc Paterno.

10/21/10 Kutschke/art 4

The Candidates
•  Existing FNAL CD supported products:

–  D0, CDF, CMS, MiniBoone, MINOS …

•  Third party products
–  FMWK (ROOT based; MIPP, early NOvA)
–  ALIROOT / ILCROOT family
–  GAUDI
–  JAS

•  With O(2 FTE), CD cannot support a third party product.
•  CD recommended evolving the CMS framework

–  Most modern of the 5 FNAL candidates.
–  C++ based.
–  Remove/replace features if of little benefit to small experiments

and hard to use and/or maintain.
10/21/10 Kutschke/art 5

Timeline
•  Jan 2009:

–  Forked from CMSSW: framework + persistency.
–  Extract needed parts; dummy out some others: 4 people 1 week.
–  scons for build management
–  CMS wiki for documentation (but now private!)

•  Used by Mu2e immediately
–  Integrated with G4.
–  Documentation:

http://mu2e.fnal.gov/public/hep/computing/gettingstarted.shtml

•  Since May 2010
–  MicroBoone completed switchover a few weeks ago.
–  NOvA port well underway.
–  1 person each with a low duty cycle.

10/21/10 Kutschke/art 6

Retained Features
•  The state machine.
•  Module (Producer/Analyzer/Filter/IO) and Service base classes.
•  Three part event ID
•  EDM: in memory and ROOT Tree based persistency.
•  Persistent objects: Event/Run/SubRun (SubRun=LuminosityBlock).
•  Four part data product ID.
•  ParameterSet mechanism.
•  Python runtime config – will change.
•  Reconstruction on demand.

–  Scheduled reconstruction also retained for now.

•  Data product provenance.
•  Exception handling strategy: action orthogonal to throw
•  TFileService
•  Message logger
10/21/10 Kutschke/art 7

Features (to be) Removed

•  EventSetup
–  Dummied out and will be removed.
–  Conditions data can be adequately managed via Services.

•  Event merging/overlay
–  Removed from Source modules; now done in producers.
–  Factor into a bookkeeping problem and a physics problem.

•  References across data products
–  Will develop something similar to CLEO III Lattice.
–  This puts the complexity in the right place.

•  Matching module names to .so file name
–  CMS build system maintains a database.
–  We have a much smaller problem that will admit a simpler solution

10/21/10 Kutschke/art 8

Rolled Our Own

•  Running G4 with framework driving the event loop.
•  RandomNumberGeneratorService.

–  Permit more than one Engine per module.
–  More formal interaction with Module c’tor to reduce the possibility

of an ill-defined state.

•  Documentation

10/21/10 Kutschke/art 9

Standards and Practices

•  Data products must not contain pointers.
–  Plan to develop CLEO III–like Lattice.
–  They contain (data product ID, index).

•  Encourage ParameterSet default values in code.
•  Very few reasons to use bare pointers (ROOT, G4).
•  Event generators are Producers not Sources.
•  Ask for data products by module label of creator

–  Enables reconstruction on demand.
•  If unsure, throw.

–  Don’t print a warning and carry on.
–  Important for a rapidly evolving detector and algorithms.

•  Use at(i) not [i] for std::vector random access.
10/21/10 Kutschke/art 10

Refactoring and Development
•  Refactoring

–  Breaks backwards compatibility with CMSSW.
–  Since ≈ Sept 1, 2010.
–  ≈ 4 people, dedicated 2 or 3 days every 2 weeks.
–  Goal Dec 1, 2010
–  Break unnecessary couplings and remove obsolete code

•  Compatibility with old CMS data formats.
•  MessageLogger can be built separately.

–  Remove EventSetup.

•  New Features
–  Reconfigure and Replay
–  Polymorphic views of data products
–  Change build system to cmake
–  New run-time configuration language

10/21/10 Kutschke/art 11

Multi-Threading

•  Critical to make best use of future machines.
•  Framework itself is thread-safe.

–  Ready to do module parallel execution.
–  But ROOT and G4 are not thread-safe (yet – but maybe soon?).

•  Where might we use module parallel execution?
–  Non-real-time parts of the DAQ/monitoring world.
–  After G4, many types of hits need to be turned into digis.
–  All analysis modules may be executed in parallel.

•  Future research direction:
–  Use framework as test bed to study sub-event parallelism.

10/21/10 Kutschke/art 12

Features I Like
•  Strong const and type safety.
•  Strong audit trail.
•  Reconstruction on demand.
•  EDM: transient and persistent orthogonal.
•  Multiple instances of one module in one job

–  Instances have different run time configuration.
•  TFileService: Histograms in directories per module instance.
•  Exceptions: throw and action are orthogonal.
•  Information from Event, Services and Framework via handles:

–  Physicists do not check return codes but handles can throw.
•  Multiple output files with runtime configurable content.
•  FileInPath
•  Most things just worked.
•  But … I would have liked much better documentation.
10/21/10 Kutschke/art 13

New User Experience - 1

•  Those who have some experience with modern
frameworks and ROOT:
–  Few new ideas, just new syntax.
–  Most are productive in hours to 1 day.

•  “Old Professor”:
–  Knows what he wants to investigate but …
–  Does not know C++ or ROOT (or even C).
–  No one has put in more than ≈15 hours; not enough.

•  “New student” working for “Old Professor”
–  Mixed results; depends strongly on the student.
–  OK if they “get” scientific computing.
–  We need much better introductions to C++ and unix.
–  Any suggestions?

10/21/10 Kutschke/art 14

New User Experience - 2

•  Why do people have difficulty?
•  Too many new ideas at once:

–  C++
–  STL
–  ROOT
–  CLHEP
–  G4
–  Framework
–  EDM
–  Choices Mu2e made about using the above.
–  Mu2e code

10/21/10 Kutschke/art 15

New User Experience - 3

•  Access to higher level objects: use handles.
•  Lower level interactions with objects use references:

10/21/10 Kutschke/art 16

 // Getting this information uses handles.
 TTracker const& tracker = ….; // The geometry of the tracker
 StrawHit const& hit = ….; // A simulated hit in the tracker.

 // Get the straw information:
 Straw const & straw = tracker.getStraw(hit.strawIndex());
 CLHEP::Hep3Vector const & mid = straw.getMidPoint();
 CLHEP::Hep3Vector const & w = straw.getDirection();

•  The & is invisible even to experienced users
•  Unecessary copies all over their code.

Odds and Ends

•  Works on SLF4 and SLF5
–  Expect to port to Mac OS
–  No plans for a Windows port.

•  What does the name “art” stand for?
–  Nothing
–  Originally “A Reconstruction Toolkit” but our vision is much

broader than reconstruction and I think that a reconstruction
toolkit has Kalman filters and cluster finders not just the
bookkeeping tools.

10/21/10 Kutschke/art 17

Summary and Conclusions

•  art forked from CMSSW
•  First release January 2009

–  Used by Mu2e since then.
–  Now used by MicroBoone
–  NOvA likely to adopt it soon.

•  Commitment from CD to support O(2 FTE).
–  Realized for the past few months.

•  Major refactoring in progress.
•  New features to be added post refactoring.
•  Will use art to study multi-threading.

10/21/10 Kutschke/art 18

Backup and Working Slides

10/21/10 Kutschke/art 19

Major Elements

10/21/10 Kutschke/art 20

Event Input

Unpack Hits

Find/Fit Tracks

Match Track/ECal

Output to file

Conditions Service

TFile Service

Message Logger

Event loop Configuration
RunTimeConfig

Input data 1…N

Output data 1…N

Histogram file(s)

Geometry file/db

Log files(s)

Event data

SubRun data

Run data
Conditions db

Geometry Service

Framework Modules Services Files/DB Data in Memory

Events, Modules, Services

•  Three part event ID
–  Run/SubRun/Event
–  Event holds “Data Products”.

•  Module
–  Per event methods: analyze/produce/filter
–  begin/end: Job/Run/SubRun. Open/close: File
–  Communicate with other modules only via the event.

•  Service
–  Singleton-like: lifetime and configuration managed by framework.
–  Some user provided: Conditions, Geometry,
–  Some provided by art: tracer, timer, memory use profile,

10/21/10 Kutschke/art 21

Not Yet Addressed

•  Users will notice these two things but we have not had
the time to think about them.

•  ROOT IO speed
–  Plan to build on experiences of others.
–  Develop standards and practices for event-data objects.

•  Data size
–  More of an experiment specific problem.
–  Develop advice for the experiments.

10/21/10 Kutschke/art 22

Status of Mu2e Software

•  Beamline and detector implemented.
–  Missing Cosmic Ray Veto sensitive volumes.
–  All else present, but missing some details.
–  3 different Trackers: T(default), L, I.
–  3 variants on T tracker.

•  Hits made in calorimeter and straws.
–  Without detailed simulation of the electronics.

•  Track finding underway.
•  Clustering in calorimeter underway.
•  G4 Graphics.
•  Planning for CD1 review in March 2011.

–  CD1 ≈ Conceptual Design

10/21/10 Kutschke/art 23

Why Drop Python?

•  CD group would like to support a common configuration
langauge for several projects, including this framework.
–  Other projects have rejected python.

•  Python file is not a run-time configuration. It is a program
to compute a run-time configuration. Actual run-time
configuration may depend on the environment

•  Would like the configuration file to be the actual config
file, not the source code for something that computes the
configuration.
–  Fits better with their view of the audit trail.

10/21/10 Kutschke/art 24

Wish List

•  Compile time switch to enable run-time bounds checking
in STL containers.

•  An introduction to C++
–  Examples relevant to scientific programming
–  Teaches best practices

•  Rudiments of unix
–  What is a shell
–  Environment
–  .profile/.login vs .tcshrc/.bashrc

10/21/10 Kutschke/art 25

